Print This Post Print This Post 2,640 views
Sep 26

Reported by Tom Abate, in Stanford News, 26 September 2013.

Unprecedented feat points toward a new generation of energy-efficient electronics!

This wafer contains tiny computers using carbon nanotubes, a material that could lead to smaller, more energy-efficient processors (by Norbert von der Groeben).

A team of Stanford engineers has built a basic computer using carbon nanotubes, a semiconductor material that has the potential to launch a new generation of electronic devices that run faster, while using less energy, than those made from silicon chips.

This unprecedented feat culminates years of efforts by scientists around the world to harness this promising but quirky material.

The achievement is reported today in an article on the cover of the  journal Nature written by Max Shulaker and other doctoral students in electrical engineering. The research was led by Stanford professors Subhasish Mitra and H.-S. Philip Wong. Continue reading »

Tagged with:
Print This Post Print This Post 2,597 views
Sep 12

Reported by Tanya Lewis, in Wired Science, 05 Sep. 2012.

Walking on a treadmill is no great feat, unless your legs are being moved by a robotic device connected to your brain.

A new brain-computer interface allows a person to walk using a pair of mechanical leg braces controlled by brain signals (above), as reported on arXiv. The device has only been tested on able-bodied people, and while it has limitations, it lays a foundation for helping people with paralysis walk again. Continue reading »

Tagged with:
Print This Post Print This Post 1,453 views
Sep 02

Reported by Layne Camero, Media Communications Office, in Michingan State University News, 29 Aug. 2012.

MSU researchers explore what would happen if computer viruses had to find mates in order to reproduce. Photo illustration by G.L. Kohuth

Computer viruses are constantly replicating throughout computer networks and wreaking havoc. But what if they had to find mates in order to reproduce?

In the current issue of Evolution, Michigan State University researchers created the digital equivalent of spring break to see how mate attraction played out through computer programs, said Chris Chandler, MSU postdoctoral researcher at MSU’s BEACON Center for the Study of Evolution in Action.

“This is actually a big question that still generates a lot of debate,” said Chandler, who co-authored the study with Ian Dworkin, assistant professor of zoology, and Charles Ofria, associate professor of computer science and engineering. “People have some good ideas, but they can be hard to test really well in nature, so we decided to take a different approach.” Continue reading »

Tagged with:
Print This Post Print This Post 1,142 views
May 10

Reported by ScienceDaily, May 8 2012.

Whether it’s a line from a movie, an advertising slogan or a politician’s catchphrase, some statements take hold in people’s minds better than others. But why?

Cornell researchers who applied computer analysis to a database of movie scripts think they may have found the secret of what makes a line memorable.

The study suggests that memorable lines use familiar sentence structure but incorporate distinctive words or phrases, and they make general statements that could apply elsewhere. The latter may explain why lines such as, “You’re gonna need a bigger boat” or “These aren’t the droids you’re looking for” (accompanied by a hand gesture) have become standing jokes. You can use them in a different context and apply the line to your own situation.

Continue reading »

Tagged with:
Print This Post Print This Post 1,475 views
Mar 09

Reported by Tanguy Chouard, Nature, 22 Feb. 2012.

From the day he was born — 23 June 1912 — Alan Mathison Turing seemed destined to solitude, misunderstanding and persecution (see page 441). As his centenary year opens, Nature hails him as one of the top scientific minds of all time (see page 440). This special issue sweeps through Turing’s innumerable achievements, taking us from his most famous roles — wartime code-breaker and founder of computer science (see page 459) — to his lesser known interests of botany, neural nets, unorganized machines, quantum physics and, well, ghosts (see page 562).

Everyone sees a different Turing. A molecular biologist might surprise you by saying that Turing’s most important paper is his 1936 work on the ‘Turing machine’ because of its relevance to DNA-based cellular operations (see page 461). A biophysicist could instead point to his 1952 work on the formation of biological patterns — the first simulation of nonlinear dynamics ever to be published (see page 464). Continue reading »

Tagged with:
Print This Post Print This Post 1,635 views
Jan 13

Reported by Ari Entin and Christina Howell, in IBM News, 12 Jan. 2012.

IBM scientists create the world’s smallest magnetic memory bit using only 12 atoms. First-ever demonstration of engineered atomic-scale structures storing information magnetically at low temperatures. New experimental atomic-scale magnet memory is at least 100 times denser than today’s hard disk drives and solid state memory chips.

Punctuating 30 years of nanotechnology research, scientists from IBM Research (NYSE: IBM) have successfully demonstrated the ability to store information in as few as 12 magnetic atoms. This is significantly less than today’s disk drives, which use about one million atoms to store a single bit of information. The ability to manipulate matter by its most basic components – atom by atom – could lead to the vital understanding necessary to build smaller, faster and more energy-efficient devices.

While silicon transistor technology has become cheaper, denser and more efficient, fundamental physical limitations suggest this path of conventional scaling is unsustainable. Alternative approaches are needed to continue the rapid pace of computing innovation.

Continue reading »

Tagged with:
Print This Post Print This Post 1,270 views
Jan 09

Reported by Edwin Cartlidge, in Nature News, 5 Jan. 2012.

Atomic electrical components conduct just like conventional wires, giving a new lease of life to Moore’s law.

Microchips could keep on getting smaller and more powerful for years to come. Research shows that wires just a few nanometres wide conduct electricity in the same way as the much larger components of existing devices, rather than being adversely affected by quantum mechanics.

As manufacturing technology improves and costs fall, the number of transistors that can be squeezed onto an integrated circuit roughly doubles every two years. This trend, known as Moore’s law, was first observed in the 1960s by Gordon Moore, the co-founder of chip manufacturer Intel, based in Santa Clara, California. But transistors have now become so small that scientists have predicted that it may not be long before their performance is compromised by unpredictable quantum effects. Continue reading »

Tagged with:
Print This Post Print This Post 1,949 views
Dec 14

Reported by Larry Hardesty, MIT News Office, 13 Dec. 2011, indicated by Prodromos Chatziagorakis.

By using optical equipment in a totally unexpected way, MIT researchers have created an imaging system that makes light look slow.

MIT researchers have created a new imaging system that can acquire visual data at a rate of one trillion exposures per second. That’s fast enough to produce a slow-motion video of a burst of light traveling the length of a one-liter bottle, bouncing off the cap and reflecting back to the bottle’s bottom.

Media Lab postdoc Andreas Velten, one of the system’s developers, calls it the “ultimate” in slow motion: “There’s nothing in the universe that looks fast to this camera,” he says. Continue reading »

Tagged with:
Print This Post Print This Post 1,580 views
Dec 02

Reported byBy Brandon Keim, in Wired Science, 28 Nov. 2011.

A new photograph-analyzing tool quantifies changes made by digital airbrushers in the fashion and lifestyle industry, where image alteration has become the psychologically destructive norm.

“Publishers have legitimate reasons to alter photographs to create fantasy and sell products, but they’ve gone a little too far,” said image forensics specialist Hany Farid of Dartmouth University. “You can’t ignore the body of literature showing negative consequences to being inundated with these images.”

Continue reading »

Tagged with:
Print This Post Print This Post 1,559 views
Nov 09

Reported by ScienceDaily, 8 Nov. 2011.

In the world of engineering, “noise” – random fluctuations from environmental sources such as heat – is generally a bad thing. In electronic circuits, it is unavoidable, and as circuits get smaller and smaller, noise has a greater and more detrimental effect on a circuit’s performance. Now some scientists are saying: if you can’t beat it, use it.

Engineers from Arizona State University in Tempe and the Space and Naval Warfare Systems Center (SPAWAR) in San Diego, Calif., are exploiting noise to control the basic element of a computer – a logic gate that can be switched back and forth between two different logic functions, such as AND\OR – using a genetically engineered system derived from virus DNA. In a paper accepted to the AIP’s journal Chaos, the team has demonstrated, theoretically, that by exploiting sources of external noise, they can make the network switch between different logic functions in a stable and reliable way.

Continue reading »

Tagged with:
preload preload preload